Ionically gelled alginate foams: physical properties controlled by operational and macromolecular parameters.

نویسندگان

  • Therese Andersen
  • Jan Egil Melvik
  • Olav Gåserød
  • Eben Alsberg
  • Bjørn E Christensen
چکیده

Alginates in the format of scaffolds provide important functions as materials for cell encapsulation, drug delivery, tissue engineering and wound healing among others. The method for preparation of alginate-based foams presented here is based on homogeneous, ionotropic gelation of aerated alginate solutions, followed by air drying. The method allows higher flexibility and better control of the pore structure, hydration properties and mechanical integrity compared to foams prepared by other techniques. The main variables for tailoring hydrogel properties include operational parameters such as degree of aeration and mixing times and concentration of alginate, as well as macromolecular properties such as the type of alginate (chemical composition and molecular weight distribution). Exposure of foams to γ-irradiation resulted in a dose-dependent (0-30 kGy) reduction in molecular weight of the alginate and a corresponding reduction in tensile strength of the foams.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maintaining dimensions and mechanical properties of ionically crosslinked alginate hydrogel scaffolds in vitro.

Ionically crosslinked alginate hydrogels are attractive scaffolds because of their biocompatibility and mild gelation reaction that allows for gentle cell incorporation. However, the instability of ionically crosslinked hydrogels in an aqueous environment is a challenge that limits their application. This report presents a novel method to control the dimensions and mechanical properties of ioni...

متن کامل

Influence of Different Foaming Conditions on the Mechanical, Physical, and Structural Properties of Polypropylene Foam

In this article, the effects of different foam production times and temperatures on the mechanical, physical, and structural properties of polypropylene (PP) foam has been investigated. The microcellular PP foams were carried out using supercritical carbon dioxide (sc-CO2) as a physical foaming agent in a batch process. The samples were placed in a pressure vessel and were saturated ...

متن کامل

Algal Foams Applied in Fixed-Bed Process for Lead(II) Removal Using Recirculation or One-Pass Modes

The incorporation of brown algae into biopolymer beads or foams for metal sorption has been previously reported. However, the direct use of these biomasses for preparing foams is a new approach. In this study, two kinds of porous foams were prepared by ionotropic gelation using algal biomass (AB, Laminaria digitata) or alginate (as the reference) and applied for Pb(II) sorption. These foams (ma...

متن کامل

A Technique for High-Throughput Protein Crystallization in Ionically Cross-Linked Polysaccharide Gel Beads for X-Ray Diffraction Experiments

A simple technique for high-throughput protein crystallization in ionically cross-linked polysaccharide gel beads has been developed for contactless handling of crystals in X-ray crystallography. The method is designed to reduce mechanical damage to crystals caused by physical contact between crystal and mount tool and by osmotic shock during various manipulations including cryoprotection, heav...

متن کامل

Immobilization of flax protoplasts in agarose and alginate beads. Correlation between ionically bound cell-wall proteins and morphogenetic response.

Linum usitatissimum protoplast-derived colonies that are cultured in auxin-supplemented medium and immobilized in Ca(2+)-alginate matrix form round colonies that develop into polarized, embryo-like structures. On the other hand, protoplast-derived colonies that are immobilized in agarose do not show an organized morphogenetic response, and unique, ionically bound cell-wall protein patterns matc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomacromolecules

دوره 13 11  شماره 

صفحات  -

تاریخ انتشار 2012